Boot Process

From xboxdevwiki
Revision as of 15:17, 28 May 2017 by JayFoxRox (talk | contribs) (2BL)
Jump to: navigation, search

Overview

MCPX

Certain things are still missing, for example, getting the CPU to 32 bit protected mode and enabling caching.[FIXME]

Xcodes

The xcode interpreter is common through both versions of the MCPX ROM. The high level interpretation of the MCPX ROM might look like this:

void xcode_interpreter() {
    int run_xcodes = 1;
    uint32_t eip = 0xff000080; // Not really EIP. This is just a pointer to the next xcode
    uint32_t result, scratch = 0;
    while (run_xcodes) {
        opcode    = get_memory_byte(eip);
        operand_1 = get_memory_dword(eip+1);
        operand_2 = get_memory_dword(eip+5);

        if (opcode == 0x07) {
            opcode    = operand_1;
            operand_1 = operand_2;
            operand_2 = result;
        }

        switch (opcode) {
            case 0x02:
                result = get_memory_dword(operand_1 & 0x0fffffff);
                break;
            case 0x03:
                set_memory_dword(operand_1) = operand_2;
                break;
            case 0x06:
                result = (result & operand_1) | operand_2;
                break;
            case 0x04:
                if (operand_1 == 0x80000880) {
                    operand_2 &= 0xfffffffd;
                }
                outl(operand_1, 0xcf8);
                outl(operand_2, 0xcfc);
                break;
            case 0x05:
                outl(operand_1, 0xcf8);
                result = inl(0xcfc);
                break;
            case 0x08:
                if (result != operand_1) {
                    eip += operand_2;
                }
                break;
            case 0x09:
                eip += operand_2;
                break;
            case 0x10:
                scratch = (scratch & operand_1) | operand_2;
                result = scratch;
                break;
            case 0x11:
                outb(operand_2, operand_1);
                break;
            case 0x12:
                result = inb(operand_1);
                break;
            case 0xee:
                run_xcodes = 0;
            default:
                break;
        }

        eip += 9;
    }
}

RC4 Decryption of the 2BL

Decryption of the 2BL seems to happen in 4 stages.

Stage 1

Initialising the working space. The MCPX ROM seems to just write 1, 2, 3, 4.... 253, 254, 255 in memory addresses 0x8f000 to 0x850FF. This might look something like:

void init_rc4() {
    uint32_t stack_pointer = 0x8f000;

    for (int iterator = 0; iterator <= 255; iterator++) {
        set_memory_byte(stack_pointer + iterator, iterator);
    }
}

Stage 2

Preparing for decryption. This gets the key from memory location 0xFFFFFFA5 and starts preparing and environment for decryption of the 2BL.

void load_key() {
    uint32_t key_location = 0xffffffa5;
    uint32_t stack_pointer = 0x8f000;
    uint8_t i, j = 0;

    for (int iterator = 0; iterator <= 255; iterator++) {
        i = get_memory_byte(iterator + stack_pointer);
        j += i + get_memory_byte(key_location + (iterator % 16));
        set_memory_byte(iterator+stack_pointer, get_memory_byte(j+stack_pointer));
        set_memory_byte(j+stack_pointer, i);
    }
}

Stage 3

Perform the decryption. The MCPX reads the 2BL from 0xFFFF9E00 and decrypts it to 0x90000. It is 24K in size.

void decrypt() {
    uint32_t stack_pointer = 0x8f000;
    uint32_t encrypted = 0xFFFF9E00;
    uint32_t decrypted = 0x90000;

    uint8_t a, b, j, i = 0;

    i = get_memory_byte(stack_pointer + 0x100); // 0
    j = get_memory_byte(stack_pointer + 0x101); // 0

    for (int edi = 0; edi <= 0x6000; ++edi) {
        ++i;

        a = get_memory_byte(stack_pointer + i);
        j += a;
        b = get_memory_byte(stack_pointer + j);
        set_memory_byte(stack_pointer + i, b);
        set_memory_byte(stack_pointer + j, a);
        a += b;
        b = get_memory_byte(edi + encrypted);
        a = get_memory_byte(stack_pointer + a);
        b ^= a;
        set_memory_byte(edi + decrypted, b);
    }
}

Stage 4

Verification. Finally the MCPX reads a string from the un-encrypted 2BL and compares it to a magic number. If it matches, all was successful, and we jump to the start of the 2BL to start decrypting the kernel.

void verify() {
    if (get_memory_dword(0x95FE4) == MAGIC_NUMBER) {
        eip = 0x900000;
    } else {
        // Else, things have gone wrong
        eip = 0xFFFFFF94;
    }
}

Notes

The RC4 algorithm was included as part of MCPX 1.0 and seems to work fine with BIOS versions 3944, 4034, and 4134.

2BL

Certain parts are still missing

MTRR Setup

First, the cache is disabled.[FIXME] Then, the MTRR (Memory Type Range Register) will be setup (using wrmsr) in the following way:

MTRR (ecx) High value (edx) Low value (eax) Notes
0x200 0x00000000 0x00000006
0x201 0x0000000F 0xFC000800 (For 64 MiB RAM BIOS)
0xF8000800 (For 128 MiB RAM BIOS)
0x202 0x00000000 0xFFF80005
0x203 0x0000000F 0xFFF80800
0x204 0x00000000 0x00000000 Clear all unused MTRR
...
0x20F 0x00000000 0x00000000
0x2FF 0x00000000 0x00000800

Once the MTRR have been written, the cache is enabled.[FIXME]

Register setup

Now the BIOS will set up the segment registers[FIXME] and stack:

Register Value Notes
ds 0x0010 Data segment[citation needed]
es 0x0010
ss 0x0010
esp 0x80400000
fs 0x0000
gs 0x0000

GDT setup

Paging

Kernel decryption

Kernel

Startup animation

Kernel Re-initialization

References