Difference between revisions of "Xbox ADPCM"
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Xbox used it's own WAV file format to encode ADPCM | + | Xbox used it's own WAV file format to encode data using [[Wikipedia:Adaptive differential pulse-code modulation|ADPCM]]. This format is often called Xbox ADPCM. |
Standard IMA ADPCM WAV files would use format code 0x0011, whereas Xbox ADPCM files use format-code 0x0069. | Standard IMA ADPCM WAV files would use format code 0x0011, whereas Xbox ADPCM files use format-code 0x0069. | ||
Line 8: | Line 8: | ||
This value is also stored in the 'fmt ' extra-data which is always 2 bytes, containing the Bytes <code>0x40, 0x00</code> (64 as unsigned 16-bit integer). | This value is also stored in the 'fmt ' extra-data which is always 2 bytes, containing the Bytes <code>0x40, 0x00</code> (64 as unsigned 16-bit integer). | ||
Because of that, all Xbox ADPCM files will have a block alignment of 36 (Mono) or 72 (Stereo) Bytes. | Because of that, all Xbox ADPCM files will have a block alignment of 36 (Mono) or 72 (Stereo) Bytes. | ||
− | As the decoder-setup in every block contains a predictor for each channel, there will be 65 samples / channel output per block ( | + | As the decoder-setup in every block contains a predictor for each channel, there will be 65 samples / channel output per block (130:36 compression ratio = 72.3% compressed). |
Aside from what was mentioned, there are no known differences to IMA ADPCM. | Aside from what was mentioned, there are no known differences to IMA ADPCM. | ||
Line 20: | Line 20: | ||
In the following tables, the following notation is used: | In the following tables, the following notation is used: | ||
+ | * All indices start at 0 | ||
* W# denotes a 32-bit word | * W# denotes a 32-bit word | ||
* B# denotes a Byte (8-bit) | * B# denotes a Byte (8-bit) | ||
Line 27: | Line 28: | ||
* Background color denotes the channel: | * Background color denotes the channel: | ||
** <div style="display: inline-block; width:10px; height:10px; border:1px solid black; background-color:SkyBlue"></div> Blue: Left = Right | ** <div style="display: inline-block; width:10px; height:10px; border:1px solid black; background-color:SkyBlue"></div> Blue: Left = Right | ||
− | ** <div style="display: inline-block; width:10px; height:10px; border:1px solid black; background-color: | + | ** <div style="display: inline-block; width:10px; height:10px; border:1px solid black; background-color:White;"></div> White: Left |
** <div style="display: inline-block; width:10px; height:10px; border:1px solid black; background-color:Tomato"></div> Red: Right | ** <div style="display: inline-block; width:10px; height:10px; border:1px solid black; background-color:Tomato"></div> Red: Right | ||
Line 33: | Line 34: | ||
{{FIXME|reason=Fix cell width}} | {{FIXME|reason=Fix cell width}} | ||
− | {{FIXME|reason=Fix cell | + | {| class="wikitable" style="font-size:90%; text-align:center;" |
+ | ! 32-bit word | ||
+ | | colspan="8" width="20%" | W0 | ||
+ | | colspan="8" width="20%" | W1 | ||
+ | | colspan="8" width="20%" | W2 | ||
+ | | rowspan="3" width="5%" | ... | ||
+ | | colspan="8" width="20%" | W8 | ||
+ | |- | ||
+ | ! Byte | ||
+ | | colspan="2" | B0 || colspan="2" | B1 || colspan="2" | B2 || colspan="2" | B3 | ||
+ | | colspan="2" | B4 || colspan="2" | B5 || colspan="2" | B6 || colspan="2" | B7 | ||
+ | | colspan="2" | B8 || colspan="2" | B9 || colspan="2" | B10 || colspan="2" | B11 | ||
+ | | colspan="2" | B32 || colspan="2" | B33 || colspan="2" | B34 || colspan="2" | B35 | ||
+ | |- | ||
+ | ! Meaning | ||
+ | | style="background-color:SkyBlue;" colspan="4" | P = S0 | ||
+ | | style="background-color:SkyBlue;" colspan="2" | SI | ||
+ | | colspan="2" | | ||
+ | | style="background-color:SkyBlue;" | S2 || style="background-color:SkyBlue;" | S1 | ||
+ | | style="background-color:SkyBlue;" | S4 || style="background-color:SkyBlue;" | S3 | ||
+ | | style="background-color:SkyBlue;" | S6 || style="background-color:SkyBlue;" | S5 | ||
+ | | style="background-color:SkyBlue;" | S8 || style="background-color:SkyBlue;" | S7 | ||
+ | | style="background-color:SkyBlue;" | S10 || style="background-color:SkyBlue;" | S9 | ||
+ | | style="background-color:SkyBlue;" | S12 || style="background-color:SkyBlue;" | S11 | ||
+ | | style="background-color:SkyBlue;" | S14 || style="background-color:SkyBlue;" | S13 | ||
+ | | style="background-color:SkyBlue;" | S16 || style="background-color:SkyBlue;" | S15 | ||
+ | | style="background-color:SkyBlue;" | S58 || style="background-color:SkyBlue;" | S57 | ||
+ | | style="background-color:SkyBlue;" | S60 || style="background-color:SkyBlue;" | S59 | ||
+ | | style="background-color:SkyBlue;" | S62 || style="background-color:SkyBlue;" | S61 | ||
+ | | style="background-color:SkyBlue;" | S64 || style="background-color:SkyBlue;" | S63 | ||
+ | |} | ||
+ | |||
+ | ==== Stereo ==== | ||
+ | |||
+ | |||
+ | {{FIXME|reason=Fix cell width}} | ||
{| class="wikitable" style="font-size:90%; text-align:center;" | {| class="wikitable" style="font-size:90%; text-align:center;" | ||
! 32-bit word | ! 32-bit word | ||
Line 39: | Line 75: | ||
| colspan="8" | W1 | | colspan="8" | W1 | ||
| colspan="8" | W2 | | colspan="8" | W2 | ||
− | + | | colspan="8" | W3 | |
− | |||
− | | colspan="8" | | ||
|- | |- | ||
! Byte | ! Byte | ||
Line 47: | Line 81: | ||
| colspan="2" | B4 || colspan="2" | B5 || colspan="2" | B6 || colspan="2" | B7 | | colspan="2" | B4 || colspan="2" | B5 || colspan="2" | B6 || colspan="2" | B7 | ||
| colspan="2" | B8 || colspan="2" | B9 || colspan="2" | B10 || colspan="2" | B11 | | colspan="2" | B8 || colspan="2" | B9 || colspan="2" | B10 || colspan="2" | B11 | ||
− | | colspan="2" | | + | | colspan="2" | B12 || colspan="2" | B13 || colspan="2" | B14 || colspan="2" | B15 |
− | |||
|- | |- | ||
! Meaning | ! Meaning | ||
− | | colspan="4" | P = S0 | + | | style="background-color:White;" colspan="4" | P = S0 |
− | | colspan="2" | SI | + | | style="background-color:White;" colspan="2" | SI |
| colspan="2" | | | colspan="2" | | ||
− | | style="background-color: | + | | style="background-color:Tomato;" colspan="4" | P = S0 |
− | | style="background-color: | + | | style="background-color:Tomato;" colspan="2" | SI |
− | | style="background-color: | + | | colspan="2" | |
− | | style="background-color: | + | | style="background-color:White;" | S2 || style="background-color:White;" | S1 |
+ | | style="background-color:White;" | S4 || style="background-color:White;" | S3 | ||
+ | | style="background-color:White;" | S6 || style="background-color:White;" | S5 | ||
+ | | style="background-color:White;" | S8 || style="background-color:White;" | S7 | ||
+ | | style="background-color:Tomato;" | S2 || style="background-color:Tomato;" | S1 | ||
+ | | style="background-color:Tomato;" | S4 || style="background-color:Tomato;" | S3 | ||
+ | | style="background-color:Tomato;" | S6 || style="background-color:Tomato;" | S5 | ||
+ | | style="background-color:Tomato;" | S8 || style="background-color:Tomato;" | S7 | ||
|} | |} | ||
+ | ... | ||
+ | {| class="wikitable" style="font-size:90%; text-align:center;" | ||
+ | ! 32-bit word | ||
+ | | colspan="8" | W14 | ||
+ | | colspan="8" | W15 | ||
+ | | colspan="8" | W16 | ||
+ | | colspan="8" | W17 | ||
+ | |- | ||
+ | ! Byte | ||
+ | | colspan="2" | B56 || colspan="2" | B57 || colspan="2" | B58 || colspan="2" | B59 | ||
+ | | colspan="2" | B60 || colspan="2" | B61 || colspan="2" | B62 || colspan="2" | B63 | ||
+ | | colspan="2" | B64 || colspan="2" | B65 || colspan="2" | B66 || colspan="2" | B67 | ||
+ | | colspan="2" | B68 || colspan="2" | B69 || colspan="2" | B70 || colspan="2" | B71 | ||
+ | |- | ||
+ | ! Meaning | ||
− | ==== | + | | style="background-color:White;" | S50 || style="background-color:White;" | S49 |
− | + | | style="background-color:White;" | S52 || style="background-color:White;" | S51 | |
− | + | | style="background-color:White;" | S54 || style="background-color:White;" | S53 | |
+ | | style="background-color:White;" | S56 || style="background-color:White;" | S55 | ||
+ | | style="background-color:Tomato;" | S50 || style="background-color:Tomato;" | S49 | ||
+ | | style="background-color:Tomato;" | S52 || style="background-color:Tomato;" | S51 | ||
+ | | style="background-color:Tomato;" | S54 || style="background-color:Tomato;" | S53 | ||
+ | | style="background-color:Tomato;" | S56 || style="background-color:Tomato;" | S55 | ||
+ | | style="background-color:White;" | S58 || style="background-color:White;" | S57 | ||
+ | | style="background-color:White;" | S60 || style="background-color:White;" | S59 | ||
+ | | style="background-color:White;" | S62 || style="background-color:White;" | S61 | ||
+ | | style="background-color:White;" | S64 || style="background-color:White;" | S63 | ||
+ | | style="background-color:Tomato;" | S58 || style="background-color:Tomato;" | S57 | ||
+ | | style="background-color:Tomato;" | S60 || style="background-color:Tomato;" | S59 | ||
+ | | style="background-color:Tomato;" | S62 || style="background-color:Tomato;" | S61 | ||
+ | | style="background-color:Tomato;" | S64 || style="background-color:Tomato;" | S63 | ||
+ | |} | ||
=== Index-Table === | === Index-Table === | ||
Line 69: | Line 138: | ||
{| class="wikitable" style="text-align: right;" | {| class="wikitable" style="text-align: right;" | ||
− | ! | + | ! |
+ | ! {{no-select}} | +0 | ||
+ | ! {{no-select}} | +1 | ||
+ | ! {{no-select}} | +2 | ||
+ | ! {{no-select}} | +3 | ||
+ | ! {{no-select}} | +4 | ||
+ | ! {{no-select}} | +5 | ||
+ | ! {{no-select}} | +6 | ||
+ | ! {{no-select}} | +7 | ||
|- | |- | ||
− | ! 0 | + | ! {{no-select}} | 0 |
− | | -1 || -1 || -1 || -1 || 2 || 4 || 6 || 8 | + | | -1{{hc}} || -1{{hc}} || -1{{hc}} || -1{{hc}} || 2{{hc}} || 4{{hc}} || 6{{hc}} || 8{{hc}} |
|- | |- | ||
− | ! 8 | + | ! {{no-select}} | 8 |
− | | -1 || -1 || -1 || -1 || 2 || 4 || 6 || 8 | + | | -1{{hc}} || -1{{hc}} || -1{{hc}} || -1{{hc}} || 2{{hc}} || 4{{hc}} || 6{{hc}} || 8 |
|} | |} | ||
Line 83: | Line 160: | ||
{| class="wikitable" style="text-align: right;" | {| class="wikitable" style="text-align: right;" | ||
− | ! | + | ! |
+ | ! {{no-select}} | +0 | ||
+ | ! {{no-select}} | +1 | ||
+ | ! {{no-select}} | +2 | ||
+ | ! {{no-select}} | +3 | ||
+ | ! {{no-select}} | +4 | ||
+ | ! {{no-select}} | +5 | ||
+ | ! {{no-select}} | +6 | ||
+ | ! {{no-select}} | +7 | ||
+ | ! {{no-select}} | +8 | ||
+ | ! {{no-select}} | +9 | ||
|- | |- | ||
− | ! | + | ! {{no-select}} | 0 |
− | | 7 || 8 || 9 || 10 || 11 || 12 || 13 || 14 || 16 || 17 | + | | 7{{hc}} || 8{{hc}} || 9{{hc}} || 10{{hc}} || 11{{hc}} || 12{{hc}} || 13{{hc}} || 14{{hc}} || 16{{hc}} || 17{{hc}} |
|- | |- | ||
− | ! 10 | + | ! {{no-select}} | 10 |
− | | 19 || 21 || 23 || 25 || 28 || 31 || 34 || 37 || 41 || 45 | + | | 19{{hc}} || 21{{hc}} || 23{{hc}} || 25{{hc}} || 28{{hc}} || 31{{hc}} || 34{{hc}} || 37{{hc}} || 41{{hc}} || 45{{hc}} |
|- | |- | ||
− | ! 20 | + | ! {{no-select}} | 20 |
− | | 50 || 55 || 60 || 66 || 73 || 80 || 88 || 97 || 107 || 118 | + | | 50{{hc}} || 55{{hc}} || 60{{hc}} || 66{{hc}} || 73{{hc}} || 80{{hc}} || 88{{hc}} || 97{{hc}} || 107{{hc}} || 118{{hc}} |
|- | |- | ||
− | ! 30 | + | ! {{no-select}} | 30 |
− | | 130 || 143 || 157 || 173 || 190 || 209 || 230 || 253 || 279 || 307 | + | | 130{{hc}} || 143{{hc}} || 157{{hc}} || 173{{hc}} || 190{{hc}} || 209{{hc}} || 230{{hc}} || 253{{hc}} || 279{{hc}} || 307{{hc}} |
|- | |- | ||
− | ! 40 | + | ! {{no-select}} | 40 |
− | | 337 || 371 || 408 || 449 || 494 || 544 || 598 || 658 || 724 || 796 | + | | 337{{hc}} || 371{{hc}} || 408{{hc}} || 449{{hc}} || 494{{hc}} || 544{{hc}} || 598{{hc}} || 658{{hc}} || 724{{hc}} || 796{{hc}} |
|- | |- | ||
− | ! 50 | + | ! {{no-select}} | 50 |
− | | 876 || 963 || 1060 || 1166 || 1282 || 1411 || 1552 || 1707 || 1878 || 2066 | + | | 876{{hc}} || 963{{hc}} || 1060{{hc}} || 1166{{hc}} || 1282{{hc}} || 1411{{hc}} || 1552{{hc}} || 1707{{hc}} || 1878{{hc}} || 2066{{hc}} |
|- | |- | ||
− | ! 60 | + | ! {{no-select}} | 60 |
− | | 2272 || 2499 || 2749 || 3024 || 3327 || 3660 || 4026 || 4428 || 4871 || 5358 | + | | 2272{{hc}} || 2499{{hc}} || 2749{{hc}} || 3024{{hc}} || 3327{{hc}} || 3660{{hc}} || 4026{{hc}} || 4428{{hc}} || 4871{{hc}} || 5358{{hc}} |
|- | |- | ||
− | ! 70 | + | ! {{no-select}} | 70 |
− | | 5894 || 6484 || 7132 || 7845 || 8630 || 9493 || 10442 || 11487 || 12635 || 13899 | + | | 5894{{hc}} || 6484{{hc}} || 7132{{hc}} || 7845{{hc}} || 8630{{hc}} || 9493{{hc}} || 10442{{hc}} || 11487{{hc}} || 12635{{hc}} || 13899{{hc}} |
|- | |- | ||
− | ! 80 | + | ! {{no-select}} | 80 |
− | | 15289 || 16818 || 18500 || 20350 || 22385 || 24623 || 27086 || 29794 || 32767 || | + | | 15289{{hc}} || 16818{{hc}} || 18500{{hc}} || 20350{{hc}} || 22385{{hc}} || 24623{{hc}} || 27086{{hc}} || 29794{{hc}} || 32767 || |
|} | |} | ||
Line 124: | Line 211: | ||
* [https://github.com/JayFoxRox/xbox-tools/tree/master/adpcm-decoder Tool to decode Xbox ADPCM files] | * [https://github.com/JayFoxRox/xbox-tools/tree/master/adpcm-decoder Tool to decode Xbox ADPCM files] | ||
* [http://samples.ffmpeg.org/game-formats/xbox-adpcm-wav/ Sample files by FFmpeg] | * [http://samples.ffmpeg.org/game-formats/xbox-adpcm-wav/ Sample files by FFmpeg] | ||
+ | |||
+ | [[Category:APU]] |
Latest revision as of 16:03, 29 December 2018
Xbox used it's own WAV file format to encode data using ADPCM. This format is often called Xbox ADPCM.
Standard IMA ADPCM WAV files would use format code 0x0011, whereas Xbox ADPCM files use format-code 0x0069.
There are always 1 (Mono) or 2 (Stereo) channels[citation needed].
All Xbox ADPCM files seem to store 64 ADPCM input nibbles per block.
This value is also stored in the 'fmt ' extra-data which is always 2 bytes, containing the Bytes 0x40, 0x00
(64 as unsigned 16-bit integer).
Because of that, all Xbox ADPCM files will have a block alignment of 36 (Mono) or 72 (Stereo) Bytes.
As the decoder-setup in every block contains a predictor for each channel, there will be 65 samples / channel output per block (130:36 compression ratio = 72.3% compressed).
Aside from what was mentioned, there are no known differences to IMA ADPCM. This is probably because the APU VP will decode ADPCM in hardware. Microsoft probably had little control over the APU ADPCM implementation and had to stay compatible to standard ADPCM. Players supporting IMA ADPCM also support Xbox ADPCM. However, they might reject files due to the different format-code.
Block format
Same as IMA ADPCM
In the following tables, the following notation is used:
- All indices start at 0
- W# denotes a 32-bit word
- B# denotes a Byte (8-bit)
- P denotes the ADPCM predictor for the block
- SI denotes the Step-Index for the block
- S# denotes a sample
- Background color denotes the channel:
- Blue: Left = Right
- White: Left
- Red: Right
Mono
[FIXME]
32-bit word | W0 | W1 | W2 | ... | W8 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Byte | B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B32 | B33 | B34 | B35 | |||||||||||||||||
Meaning | P = S0 | SI | S2 | S1 | S4 | S3 | S6 | S5 | S8 | S7 | S10 | S9 | S12 | S11 | S14 | S13 | S16 | S15 | S58 | S57 | S60 | S59 | S62 | S61 | S64 | S63 |
Stereo
[FIXME]
32-bit word | W0 | W1 | W2 | W3 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Byte | B0 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 | B15 | ||||||||||||||||
Meaning | P = S0 | SI | P = S0 | SI | S2 | S1 | S4 | S3 | S6 | S5 | S8 | S7 | S2 | S1 | S4 | S3 | S6 | S5 | S8 | S7 |
...
32-bit word | W14 | W15 | W16 | W17 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Byte | B56 | B57 | B58 | B59 | B60 | B61 | B62 | B63 | B64 | B65 | B66 | B67 | B68 | B69 | B70 | B71 | ||||||||||||||||
Meaning | S50 | S49 | S52 | S51 | S54 | S53 | S56 | S55 | S50 | S49 | S52 | S51 | S54 | S53 | S56 | S55 | S58 | S57 | S60 | S59 | S62 | S61 | S64 | S63 | S58 | S57 | S60 | S59 | S62 | S61 | S64 | S63 |
Index-Table
Same as IMA ADPCM
+0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | |
---|---|---|---|---|---|---|---|---|
0 | -1, | -1, | -1, | -1, | 2, | 4, | 6, | 8, |
8 | -1, | -1, | -1, | -1, | 2, | 4, | 6, | 8 |
Step-Table
Same as IMA ADPCM
+0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 7, | 8, | 9, | 10, | 11, | 12, | 13, | 14, | 16, | 17, |
10 | 19, | 21, | 23, | 25, | 28, | 31, | 34, | 37, | 41, | 45, |
20 | 50, | 55, | 60, | 66, | 73, | 80, | 88, | 97, | 107, | 118, |
30 | 130, | 143, | 157, | 173, | 190, | 209, | 230, | 253, | 279, | 307, |
40 | 337, | 371, | 408, | 449, | 494, | 544, | 598, | 658, | 724, | 796, |
50 | 876, | 963, | 1060, | 1166, | 1282, | 1411, | 1552, | 1707, | 1878, | 2066, |
60 | 2272, | 2499, | 2749, | 3024, | 3327, | 3660, | 4026, | 4428, | 4871, | 5358, |
70 | 5894, | 6484, | 7132, | 7845, | 8630, | 9493, | 10442, | 11487, | 12635, | 13899, |
80 | 15289, | 16818, | 18500, | 20350, | 22385, | 24623, | 27086, | 29794, | 32767 |
Algorithm
The algorithms for encoding and decoding are the same as IMA ADPCM. For an example implementation and an explanation, refer to the related links.